## Polynomial(x, a1, a0[, a...])

##### Last updated July 18, 2001

**Version:** 1 |
**Requires:** CF5 |
**Library:** MathLib

**Description:**

Horner's method, evaluates for given value of x
for a polynomial in the form y = an*x^n + an-1*x^(n-1) + an-2*x^(n-2) + ... + a1 * x + a0
<P>
Supply as many coefficients as necessary (two required) for each decreasing power of x, using 0 for missing terms.

**Return Values:**

Returns a simple value.

**Example:**

```
<CFSET x = -2>
<CFSET a4 = 2>
<CFSET a3 = 0>
<CFSET a2 = -3>
<CFSET a1 = 3>
<CFSET a0 = -4>
<CFOUTPUT>
Given x = -2, a4 = 2, a3 = 0, a2 = -3, a1 = 3, a0 = -4
Polynomial(-2, 2, 0, -3, 3, -4) is #Polynomial(-2, 2, 0, -3, 3, -4)#
</CFOUTPUT>
```

**Parameters:**

Name | Description | Required |
---|---|---|

x | Any real value. | Yes |

a1 | Real coefficient of highest power of x. | Yes |

a0 | Real coefficient of second-highest power of x. | Yes |

a... | Additional coefficients. | No |

**Full UDF Source: **

```
/**
* Evaluates the Polynomial in the form y = an * x^n + a(n-1) * x^(n-1) + ... + a1 * x + a0 for a given value of x.
*
* @param x Any real value.
* @param a1 Real coefficient of highest power of x.
* @param a0 Real coefficient of second-highest power of x.
* @param a... Additional coefficients.
* @return Returns a simple value.
* @author Joel Cox (jlcox@goodyear.com)
* @version 1.0, July 18, 2001
*/
function Polynomial(x, a1, a0)
{
var RetVal = a1 * x + a0;
var arg_count = ArrayLen(Arguments);
var opt_arg = 4;
for( ; opt_arg LTE arg_count; opt_arg = opt_arg + 1 )
{
RetVal = RetVal * x + Arguments[opt_arg];
}
return(RetVal);
}
```

blog comments powered by Disqus
### Search CFLib.org

### Latest Additions

Kevin Cotton added

date2ExcelDate

May 5, 2016

Raymond Camden added

CapFirst

April 25, 2016

Chris Wigginton added

loremIpsum

January 18, 2016

Gary Stanton added

calculateArrival...

November 19, 2015

Sebastiaan Naafs - van Dijk added

getDaysInQuarter

November 13, 2015