Polynomial(x, a1, a0[, a...])
Last updated July 18, 2001
Version: 1 | Requires: CF5 | Library: MathLib
Description:
Horner's method, evaluates for given value of x
for a polynomial in the form y = an*x^n + an-1*x^(n-1) + an-2*x^(n-2) + ... + a1 * x + a0
Supply as many coefficients as necessary (two required) for each decreasing power of x, using 0 for missing terms.
Return Values:
Returns a simple value.
Example:
<CFSET x = -2>
<CFSET a4 = 2>
<CFSET a3 = 0>
<CFSET a2 = -3>
<CFSET a1 = 3>
<CFSET a0 = -4>
<CFOUTPUT>
Given x = -2, a4 = 2, a3 = 0, a2 = -3, a1 = 3, a0 = -4
Polynomial(-2, 2, 0, -3, 3, -4) is #Polynomial(-2, 2, 0, -3, 3, -4)#
</CFOUTPUT>
Parameters:
Name | Description | Required |
---|---|---|
x | Any real value. | Yes |
a1 | Real coefficient of highest power of x. | Yes |
a0 | Real coefficient of second-highest power of x. | Yes |
a... | Additional coefficients. | No |
Full UDF Source:
/**
* Evaluates the Polynomial in the form y = an * x^n + a(n-1) * x^(n-1) + ... + a1 * x + a0 for a given value of x.
*
* @param x Any real value.
* @param a1 Real coefficient of highest power of x.
* @param a0 Real coefficient of second-highest power of x.
* @param a... Additional coefficients.
* @return Returns a simple value.
* @author Joel Cox (jlcox@goodyear.com)
* @version 1.0, July 18, 2001
*/
function Polynomial(x, a1, a0)
{
var RetVal = a1 * x + a0;
var arg_count = ArrayLen(Arguments);
var opt_arg = 4;
for( ; opt_arg LTE arg_count; opt_arg = opt_arg + 1 )
{
RetVal = RetVal * x + Arguments[opt_arg];
}
return(RetVal);
}
Search CFLib.org
Latest Additions
Raymond Camden added
QueryDeleteRows
November 04, 2017
Leigh added
nullPad
May 11, 2016
Raymond Camden added
stripHTML
May 10, 2016
Kevin Cotton added
date2ExcelDate
May 05, 2016
Raymond Camden added
CapFirst
April 25, 2016