## Polynomial(x, a1, a0[, a...])

##### Last updated July 18, 2001

**Version:** 1 |
**Requires:** CF5 |
**Library:** MathLib

**Description:**

Horner's method, evaluates for given value of x
for a polynomial in the form y = an*x^n + an-1*x^(n-1) + an-2*x^(n-2) + ... + a1 * x + a0

Supply as many coefficients as necessary (two required) for each decreasing power of x, using 0 for missing terms.

**Return Values:**

Returns a simple value.

**Example:**

```
<CFSET x = -2>
<CFSET a4 = 2>
<CFSET a3 = 0>
<CFSET a2 = -3>
<CFSET a1 = 3>
<CFSET a0 = -4>
<CFOUTPUT>
Given x = -2, a4 = 2, a3 = 0, a2 = -3, a1 = 3, a0 = -4
Polynomial(-2, 2, 0, -3, 3, -4) is #Polynomial(-2, 2, 0, -3, 3, -4)#
</CFOUTPUT>
```

**Parameters:**

Name | Description | Required |
---|---|---|

x | Any real value. | Yes |

a1 | Real coefficient of highest power of x. | Yes |

a0 | Real coefficient of second-highest power of x. | Yes |

a... | Additional coefficients. | No |

**Full UDF Source: **

```
/**
* Evaluates the Polynomial in the form y = an * x^n + a(n-1) * x^(n-1) + ... + a1 * x + a0 for a given value of x.
*
* @param x Any real value.
* @param a1 Real coefficient of highest power of x.
* @param a0 Real coefficient of second-highest power of x.
* @param a... Additional coefficients.
* @return Returns a simple value.
* @author Joel Cox (jlcox@goodyear.com)
* @version 1.0, July 18, 2001
*/
function Polynomial(x, a1, a0)
{
var RetVal = a1 * x + a0;
var arg_count = ArrayLen(Arguments);
var opt_arg = 4;
for( ; opt_arg LTE arg_count; opt_arg = opt_arg + 1 )
{
RetVal = RetVal * x + Arguments[opt_arg];
}
return(RetVal);
}
```

### Search CFLib.org

### Latest Additions

Raymond Camden added

QueryDeleteRows

November 04, 2017

Leigh added

nullPad

May 11, 2016

Raymond Camden added

stripHTML

May 10, 2016

Kevin Cotton added

date2ExcelDate

May 05, 2016

Raymond Camden added

CapFirst

April 25, 2016